

Service Oriented Architecture for the Next Generation Air Transportation System

May 2, 2007

Gary Luckenbaugh
Jon Dehn
Sid Rudolph
Scott Landriau

Lockheed Martin TSS

Copyright ©Lockheed Martin 2007, All Rights Reserved

Agenda

- Next Generation Air Transportation (NEXTGEN) Challenges
- Service Oriented Architecture (SOA) Concepts
- Analysis and Synthesis Methodology
- Independent Research & Development (IRAD) Example Results
- Prototype Demonstration of Practical Applications

NEXTGEN Challenges

- Address Capacity Demands
- Enhance Safety and Security
- Improve Common Situational Awareness
- Enable Flexible Allocation of Workload
- Facilitate Agile Evolution of Automation

Decision Making Roles

Service Oriented Architecture (SOA)

Attributes

- Loosely Coupled Modular Components
- Well Defined and Visible Interfaces Services
- Implementation Independent Service Definitions
- Supported by Existing and Emerging Standards
- Enterprise Service Bus Based Infrastructure
- Enterprise Oriented Perspective

Benefits

- Agile and Responsive to Change
- Reduced Cost of Ownership
- Ease of Maintenance

Layered SOA Architecture

Basic Data Types

- Surveillance information related to detection, tracking, characterization, and observation of aircraft and other vehicles for the purpose of conducting flight operations in a safe and efficient manner
- Flight/Flow information that establishes flight identity, aircraft equipage, intended route of flight, the corresponding 4 dimensional trajectory, and the degree to which the flight's actual movement conforms with its stated intent
- Weather information characterizing the observed and forecast meteorological conditions that may be relevant to current and planned flight operations
- Aeronautical information defining the structure, characteristics, and status of the airspace and ground based infrastructure where relevant for current and planned flight operations
- NAS Status current and historical information regarding the status, behavior, and alert notifications for the resources, facilities, systems, equipment, interfaces, and services that constitute the NAS

Analysis Work Products

Data Taxonomy Example

Scenario Example

Copyright ©Lockheed Martin 2007, All Rights Reserved

Identified Services

- Evaluate Flight Plan
- Create Flight Data Object
- Flight Object Delivery (publish/subscribe)
- Flow Constraint Delivery (publish/subscribe)
- Aeronautical Data Delivery (publish/subscribe)

Practical Application

- Prototype demonstration of SWIM enabled applications
- SWIM Enabled Applications:
 - Prototype Flight Data Input/Output (FDIO) Application
 - Traffic Flow Management (TFM) Demand Calculator
 - Flight Plan Pre-Processor (FP3) Application
 - Special Use Airspace (SUA) Management
- Key Services:
 - Flight Data Object Creation/Delivery
 - Evaluate Flight Plan
 - Aeronautical Data Delivery (SUA status, Pref Route status)

A

Summary

- Efficient and flexible information sharing is critical to meeting both the near term objectives and longer term NEXTGEN challenges
- Service Oriented Architecture (SOA) concepts offer significant benefits in reduced cost of ownership, ease of maintenance, and flexibility to respond to evolving requirements
- Analysis and synthesis methodologies exist and can readily be employed to derive and define flexible services that support applications and users
- Practical application of SOA concepts is already feasible and being demonstrated today

The essential motivation, technologies, and tools are already in place; all that remains is to make it happen ...